| | | |

Progress Towards Potassium-Ion Batteries

July 10, 2025

Progress Towards Potassium-Ion Batteries
Potassium-ion batteries could have a higher energy density than sodium-ion batteries. This is important for large-scale energy storage such as for renewable energy.

Progress towards Potassium-ion batteries

In a review published in Science and Technology of Advanced Materials, researchers have surveyed the battery technologies that will be vital for a sustainable green transition. Eunho Lim and colleagues at Korea’s Dongguk University discuss recent advances and challenges, and point towards the research needed to develop an alternative to lithium-ion batteries.

Although lithium-ion batteries have been invaluable in the electronics revolution—powering laptops, smartphones, electronic vehicles, and much more—their expanding use faces a critical challenge. Lithium is not a common resource. Increasing demand has turned it into a high-value, strategic resource, and the green transition is expected to increase demand further still.

One alternative is to develop battery technologies based around a more common material. Sodium-ion batteries are an option, and the technology is nearly ready for commercialization. But potassium-ion batteries would be even better, since they could have a higher energy density, which is especially important for large-scale energy storage, such as for renewable energy.

“Potassium-ion batteries are emerging as a viable alternative due to the abundance and cost-effectiveness of potassium, but realizing their potential requires the development of advanced anode materials tailored to the unique properties of potassium ions,” explains Lim.

Professor Lim’s review addresses the research needed to realize the potential of potassium-ion batteries. The paper systematically examines the strengths and weaknesses of different anode materials and the electrochemical mechanisms each would rely on. The paper also outlines strategies that could overcome the weaknesses of each approach, as well as the trade-offs between performance and stability. One important point that emerges is the interaction of electrochemical parameters and physical structures in determining the potassium-ion batteries’ capacity and longevity. Based on this overview, the team highlights paths for future research to advance potassium-ion battery technology.

Lim plans to build on this groundwork, aiming to design new materials that can deliver the promise of potassium-ion batteries while working around their limitations. “My research will focus on the development of cost-effective, high-performance, and safe anode materials for potassium-ion batteries,” he says. He also plans to use advanced characterization techniques to investigate some of the fundamental phenomena that happen in the battery materials. “Understanding these mechanisms will be crucial for optimizing material design and electrode architecture.”

“Ultimately,” he says, “my goal is to contribute to the commercialization of potassium-ion batteries by developing materials that can rival or exceed the performance of current lithium-ion battery  anodes.”

More Information

Eunho Lim

Dongguk University, Republic of Korea

eunholim@dgu.ac.kr

Paper: https://doi.org/10.1080/14686996.2025.2518746

About Science and Technology of Advanced Materials (STAM)

Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials. https://www.tandfonline.com/STAM

Related Stories

Mechatronics Canada Digest Archives

Related Articles



Editor’s Pick: Featured Article

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s scalable engineering software, u-control 2000, adapts individually to your requirements. And, the u-control is powerful, compact and fully compatible with Weidmüller’s I/O system u-remote. This article looks at what makes u-control the heart of your automation.

Programmable logic controllers (PLCs) are one of the main components of any automated system. A typical control system has inputs, outputs, controllers (i.e., PLCs), and some type of human interaction with the system, a human machine interface (HMI), for example.

Read More



Latest Articles

  • Labeling Cables and Wires

    February 3, 2026 Choosing the right wire marker or cable label Cable and wire labeling is critical in the identification, assembly, and repair of electrical control panels, wire harnesses, and data/telecommunications systems. It is an upfront cost that saves time and labor expenses when changes or repairs need to occur to the systems you work Read More…

  • ITC 101: Understanding NEMA Ratings for Electrical Enclosures

    February 3, 2026 Understanding NEMA Ratings for Electrical Enclosures NEMA Ratings are an essential classification system used across North America to define the environmental and mechanical protection provided by electrical enclosures. Developed by the National Electrical Manufacturers Association (NEMA), these ratings help engineers, installers, and specifiers identify the appropriate enclosure type for industrial, commercial, and outdoor Read More…